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Enantioselektive allylische Substitution an
cyclischen Substraten unter Katalyse mit
Palladiumkomplexen von P,N-Chelatliganden
mit Cymantreneinheit**
Steffen Kudis und Günter Helmchen*

Palladiumkomplex-katalysierte asymmetrische C-C-Bin-
dungsknüpfungen an Allylverbindungen werden gegenwärtig
intensiv erforscht.[1] Als Liganden haben sich modulare, C2-
symmetrische Diphosphane[2] und Phosphanylcarbonsäuren[3]

vor allem bei kleinen cyclischen Substraten bewährt. Für
acyclische Substrate wurden chirale Phosphanyldihydrooxa-
zole erfolgreich als Liganden eingesetzt[4] und dabei hohe
Enantioselektivitäten (bis > 99:1) erreicht. Cyclische Sub-
strate 1 (Schema 1) gaben mit diesen Liganden dagegen nur

Schema 1. Palladiumkomplex-katalysierte allylische Substitution an cycli-
schen Allylacetaten.

eine geringe Enantioselektivität. Wegen der besonders gün-
stigen Eigenschaften der Phosphanyldihydrooxazole, d.h.
leichter Zugänglichkeit und hoher Umsatzzahl in der Kata-
lyse, war die Entwicklung von Liganden, die für cyclische
Substrate geeignet sind, von groûem Interesse. Wir fanden
solche Verbindungen nun anhand mechanistischer Vorstel-
lungen.

Kernpunkte der Vorstellungen über die Reaktionen mit
Dihydrooxazol- und anderen P,N-Liganden[5] sind a) die
Annahme eines bevorzugten Angriffs des Nucleophils auf
das zum Phosphoratom trans-ständige Kohlenstoffatom der
Allylgruppe und b) das Postulat, daû von den diastereomeren
exo- und endo-p-Allylkomplexen A (Schema 2) das exo-
Isomer etwas rascher reagiert. Da diese Diastereomere aber
ähnlich reaktiv sind, bestimmt im wesentlichen das Verhältnis
ihrer Konzentrationen die Enantioselektivität der Substitu-
tion. Der Grund für die geringe Selektivität bei cyclischen
Substraten ist deren mangelnde Differenzierung, d.h. die
etwa gleich groûe Population von exo- und endo-Isomeren.

Mit Liganden der zweiten Generation konnte die Enantio-
selektivität für cyclische Substrate durch Ersatz der pseudo-
axialen Phenylgruppe gegen eine 2-Biphenylylgruppe deut-
lich gesteigert werden;[6] man erzielte ee-Werte von 50 ± 80 %.
Eigentlich war eine noch höhere Enantioselektivität erwartet

Schema 2. exo-endo-Isomerie bei p-Allylpalladiumkomplexen mit Phos-
phanyldihydrooxazol-Liganden.

worden, denn die Kristallstrukur des Komplexes B mit R�
iPr und n� 6 wies nur das Konformer auf, in dem ± bezüglich
der Einfachbindung zwischen dem Phosphoratom und der 2-
Biphenylylgruppe ± die terminale Phenylgruppe direkt über
dem Allylsystem liegt. Dieses Konformer ist für eine hohe
Selektivität am günstigsten. NOE-1H-NMR-Messungen[7] zu-
folge existiert neben dem Konformer B im Gleichgewicht ein
Konformer C, in dem die 2-Biphenylylgruppe vom Palla-
diumzentrum abgewandt ist und deshalb die Allylgruppe
nicht beeinfluût. Um die Drehbarkeit der 2-Biphenylylgruppe
einzuschränken, haben wir nun einen sterisch blockierenden
Rest eingeführt, indem wir den ¹flachenª Benzolkern durch
die sterisch anspruchsvolle Tricarbonylcyclopentadienylman-
gan(Cymantren)-Einheit ersetzten (D).

Zur Synthese der neuen Liganden wurde Cymantrencar-
bonsäurechlorid[8] 3 mit (S)-Valinol und (S)-tert-Leucinol zu
den Amiden 4 bzw. 5 (94 bzw. 90 %) umgesetzt (Schema 3).
Nach etablierten Verfahren[9] wurden aus diesen die Dihydro-
oxazole 6 bzw. 7 erhalten (81 bzw. 80%). Wie analoge Ferrocen-
derivate[10] lieûen sich die neuen Dihydrooxazole diastereo-
selektiv metallieren und anschlieûend mit Phosphanylchlori-
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Schema 3. Synthese der auf Cymantren basierenden Phosphanyldihydro-
oxazole 9 ± 14 : 9 a, 9 c : R� iPr, Ar1�Ar2�Ph; 10a, 10 c : R� tBu, Ar1�
Ar2�Ph; 11a, 11 b : R� tBu, Ar1�Ph, Ar2� 2-Bp; 12a, 12 b : R� tBu,
Ar1� 3,5-(CH3)2C6H3, Ar2� 2-Bp; 13a, 13 b : R� tBu, Ar1� 3,5-
(CF3)2C6H3, Ar2� 2-Bp; 14 a : R� tBu, Ar1�Ar2� 2-Bp (2-Bp� 2-Biphe-
nylyl).

den umsetzen. Anders als bei den Ferrocenderivaten findet
bei den Lithiocymantrenen eine langsame ¾quilibrierung
statt, weshalb die Zeitspanne zwischen der Metallierung und
der Zugabe des Phosphanylchlorids möglich kurz sein muû.
So erhielt man bei ÿ78 8C nach 2 h zwischen Zugabe von
sBuLi und Chlordiphenylphosphan aus 6 und 7 die Produkte
9 a und 9 c bzw. 10 a und 10 c im Verhältnis 85:15 bzw. 88:12.
Bei einer Zeitspanne von 15 min entstanden die Epimere 9 c
und 10 c nicht mehr; man isolierte 9 a in 67 % und 10 a in 50 %
Ausbeute. Die relative Konfiguration der neuen Verbindun-
gen wurde durch die Annahme von Reaktionen über die
Übergangszustände E und F (bevorzugt) in Analogie zu den
Reaktionen entsprechender Ferrocenderivate abgeleitet.

Durch Reaktion der Lithioderivate mit (2-Biphenylyl)-
(chlor)phenylphosphan wurde mit dem Phosphoratom ein
weiteres stereogenes Zentrum eingeführt. Die Epimere 11 a
und 11 b entstanden in 64 % Ausbeute im Verhältnis 6:5, 11 c
und 11 d wurden nicht nachgewiesen. Durch Kristallisation
aus n-Hexan/Diethylether erhielt man 11 b in einer Reinheit
von >99.9 % in 26 % Ausbeute. Die Konfiguration wurde
durch eine Kristallstrukturanalyse bestimmt (siehe unten). Das
reine Epimer 11 a, ein Öl, wurde aus der Mutterlauge nach
Chromatographie in 31 % Ausbeute erhalten. Das Erhitzen
des Diastereomeregemisches auf >90 8C führte zur Epimeri-
sierung am Phosphoratom und gab 11 a mit hoher Selektivität
(11a :11b� 9:1). Zur Untersuchung weiterer elektronischer
und sterischer Einflüsse wurden analog die Phosphane 12 b
(32 %), 13 b (31 %) und 14 a (28%) hergestellt.

Die neuen Liganden wurden in Substitutionen entspre-
chend Schema 1 getestet (Tabelle 1). Die aus ihnen in situ
hergestellten Katalysatoren waren deutlich aktiver als die
vom Typ A oder B (ca. um den Faktor 6 erhöhte Reaktions-
geschwindigkeiten). Bei den Liganden 9 a,c und 10 a hatte das
Cymantrengerüst erwartungsgemäû nur einen geringen Ein-
fluû (Nr. 1 ± 3). Entscheidende Prüfsteine für unser Konzept

Tabelle 1. Palladiumkomplex-katalysierte Substitution an cyclischen Allyl-
acetaten 1[a] (Schema 1).

Nr. Ligand Sub- t T Lösungs- Ausb. ee[b]

strat [min] [8C] mittel [%] [%]

1 9a 1b 10 20 THF 98 30
2 9c 1b 10 20 THF 98 20
3 10a 1b 10 20 THF 97 31
4 11a 1b 10 20 THF 91 31
5 11b 1b 10 20 THF 95 85
6 11b 1a 10 20 THF 86 80
7 11b 1a 120 ÿ 50 DMF 73 96
8 11b 1b 40 20 DMF 97 87
9 11b 1b 90 0 DMF 86 90
10 11b 1b 180 ÿ 20 DMF 62 93
11 11b 1c 5 20 THF 96 78
12 11b 1c 75 0 DMF 86 98
13 11b 1c 180 ÿ 20 DMF 32 > 99.9
14 12b 1c 75 0 DMF 71 87
15 13b 1c 120 0 DMF 79 92
16 14a 1c 120 0 DMF 82 44

[a] Eine Lösung von 198.0 mg (1.5 mmol) Malonsäuredimethylester in
2 mL Lösungsmittel wurde mit 33.6 mg (1.4 mmol) NaH versetzt. Das
Reaktionsgemisch gab man zu einer Lösung von 1.83 mg (5.0 mmol) [{(h3-
C3H5)PdCl}2], 11.0 mmol des Dihydrooxazol-Liganden (9a ± 14 a) und
1.0 mmol des cyclischen Allylsubstrats (1 a ± c) im angegebenen Lösungs-
mittel. Man rührte während der angegebenen Zeit, versetzte anschlieûend
mit gesättigter NH4Cl-Lösung und extrahierte dreimal mit je 20 mL
Diethylether. Die organische Phase wurde über Na2SO4 getrocknet und
eingedampft. Die Produkte wurden durch Säulenchromatographie (Kie-
selgel, n-Hexan/EtOAc, 97/3) gereinigt. [b] In allen Fällen waren die
bevorzugten Produkte (R)-konfiguriert. Die Enantiomerenreinheit von 2b
und 2 c wurde durch isotherme Gaschromatographie an einer Chrompack-
CP-Chirasil-DEX-CB-Säule (25 m� 0.25 mm, 0.25 mm Filmdicke) be-
stimmt; 2b (110 8C): tR((ÿ)-(S)-2b)� 37.7 min, tR((�)-(R)-2 b)� 38.2 min;
2c (120 8C), tR((ÿ)-(S)-2c)� 36.9 min, tR((�)-(R)-2 c)� 37.8 min. Bei 2a
wurde die optische Reinheit mit folgendem Referenzwert (100 % ee)
bestimmt: [a]20

D ��98.7 (c� 2.3 in CHCl3). Zur Überprüfung wurde eine
Probe von 2 verseift und zur 2-Cyclopentenylessigsäure decarboxyliert;
diese wurde in das Iodlacton überführt, dessen Enantiomere gaschromato-
graphisch getrennt werden können (GC-Säule wie oben, 145 8C, tR� 34.5
und 38.3 min).[6]
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sind die diastereomeren Liganden 11 a und b. In Analogie zu 9
und 10 induzierte 11 a nur geringe (Nr. 4), 11 b aber eine sehr
hohe Selektivität (Nr. 5), wie dies für einen Komplex vom Typ
D erwartet wurde. Durch Optimierung der Reaktionsbedin-
gungen konnten mit 11 b Enantioselektivitäten von 89:11 bis
> 99:1 erzielt werden (Nr. 5 ± 13). Mit den elektronisch
unterschiedlich substituierten Phosphanen 12 b und 13 b und
dem sterisch besonders anspruchsvollen Phosphan 14 a waren
die Selektivitäten vergleichsweise niedrig (Nr. 14 ± 16). Ins-
gesamt induzierte der Ligand 11 b in der untersuchten Reak-
tion eine höhere Reaktivität und Selektivität als die bisher
bekannten Phosphanyldihydrooxazole und andere unsymme-
trische Liganden.

Zur Überprüfung unserer Hypothese über die Struktur von
Komplexen des Typs D wurde als Beispiel der Allylkomplex
16 hergestellt, indem man den bekannten Komplex 15[11] mit
dem Phosphan 11 b in Dichlormethan umsetzte und anschlie-
ûend das Gegenion Chlorid gegen Hexafluorophosphat aus-
tauschte (Schema 4). Im Kristall[12] liegt eine Struktur vom

Schema 4. Herstellung des h3-Cyclohexenylpalladiumkomplexes 16.

Typ D vor (Abb. 1). In einer Lösung des Komplexes in
[D8]THF bei ÿ78 8C war 31P-NMR-spektroskopisch nur eine
Spezies nachzuweisen. Beim Erwärmen trat keine Isomerisie-
rung ein. Man kann also davon ausgehen, daû die Produkte

Abb. 1. Stereoskopische Darstellung der Struktur des Kations von 16 im
Kristall. Die H-Atome sind nicht wiedergegeben.

aus den Allylkomplexen des Typs D durch Angriff am
Allylterminus trans zum Phosphoratom entstehen. Die Bin-
dungslängen und -winkel liegen in Bereichen, die für h3-
Cyclohexenylpalladiumkomplexe mit Phosphanyldihydro-
oxazol-Liganden typisch sind. Ungewöhnlich an der Struktur
ist die Stellung der P-Arylgruppen, bei denen die P-C-
Bindungen fast symmetrisch zur Koordinationsebene (N-Pd-
P) angeordnet sind. Ursache dafür ist eine Wechselwirkung
zwischen der 2-Biphenylylgruppe und dem Mn(CO)3-Frag-

ment, sie verhindert die übliche pseudoaxiale Stellung der P-
Arylgruppe.[13]
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